New Poisson–Boltzmann type equations: one-dimensional solutions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Poisson-boltzmann Type Equations: One Dimensional Solutions

The Poisson-Boltzmann (PB) equation is conventionally used to model the equilibrium of bulk ionic species in different media and solvents. In this paper we study a new PoissonBoltzmann type (PB n) equation with a small dielectric parameter 2 and nonlocal nonlinearity which takes into consideration of the preservation of the total amount of each individual ion. This equation can be derived from ...

متن کامل

Analytic adjoint solutions for the quasi-one-dimensional Euler equations

The analytic properties of adjoint solutions are examined for the quasi-onedimensional Euler equations. For shocked flow, the derivation of the adjoint problem reveals that the adjoint variables are continuous with zero gradient at the shock, and that an internal adjoint boundary condition is required at the shock. A Green’s function approach is used to derive the analytic adjoint solutions cor...

متن کامل

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

Wavelet - Galerkin solutions for one dimensional partial di erential equations

In this paper we describe how wavelets may be used to solve partial diierential equations. These problems are currently solved by techniques such as nite diierences, nite elements and multi-grid. The wavelet method, however, ooers several advantages over traditional methods. Wavelets have the ability to represent functions at diierent levels of resolution, thereby providing a logical means of d...

متن کامل

Exact solutions of (3 +1)-dimensional nonlinear evolution equations

In this paper, the kudryashov method has been used for finding the general exact solutions of nonlinear evolution equations that namely the (3 + 1)-dimensional Jimbo-Miwa equation and the (3 + 1)-dimensional potential YTSF equation, when the simplest equation is the equation of Riccati.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinearity

سال: 2010

ISSN: 0951-7715,1361-6544

DOI: 10.1088/0951-7715/24/2/004